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Abstract

Imagine pouring a box of granola into a bowl. Are you con-
sidering hundreds of individual chunks or the motion of the
group as a whole? Human perceptual limits suggest we can-
not be representing the individuals, implying we simulate ‘en-
sembles’of objects. If true, we would need to represent group
physical properties beyond individual aggregates, similar to
perceiving ensemble properties like color, size, or facial ex-
pression. Here we investigate whether people do hold ensem-
ble representations of mass, using tasks in which participants
watch a video of a single marble or set of marbles falling onto
an elastic cloth and judge the individual or average mass. We
find first that people better judge average masses than individ-
ual masses, then find evidence that the better ensemble judg-
ments are not just due to aggregating information from individ-
ual marbles. Together, this supports the concept of ensemble
perception in intuitive physics, extending our understanding of
how people represent and simulate sets of objects.
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Introduction
Every morning, many people pour granola from a box into
their cereal bowl with little thought or effort. Doing so re-
quires predicting how the granola will travel from the box
when it is tipped. But it seems unlikely that we predict the
motion of each individual grain or particle of granola, as there
are far too many to keep track of given the limits of our atten-
tion and working memory. How then are we able to predict
the motion of large collections of objects?

While much recent research on intuitive physics has fo-
cused on people’s predictions about the motions or interac-
tions of a small number of individual objects (see Smith et
al. (2024) for an overview), there is evidence that people
treat large collections of objects as different from individuals
(Fig. 1). For instance, it has been theorized that adults process
pouring sand more like a liquid than a collection of solid ob-
jects (Kubricht et al., 2017) and even 5-months-old infants
show different expectations about the behavior of “stuff”,
such as piles of sand, compared to solid objects (Hespos,
Ferry, Anderson, Hollenbeck, & Rips, 2016). Recent neu-
roimaging work found that functionally distinct brain regions
are engaged when adults observe granular and liquid sub-
stances versus solid objects (Paulun, Pramod, & Kanwisher,
2023). However, none of these studies have directly tested
whether the mind treats a collection of objects as something
distinct and different from a large set of individual items.

Here, we test whether ensembles of objects are represented
and processed differently than sets of individual items for
physical reasoning. That is, is the representational whole for
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an ensemble of objects or particles in intuitive physics any
different than the sum of its parts? While we are not mak-
ing claims for precisely how these collections might be pro-
cessed, any theory of ensemble physics would require people
to represent properties of the ensemble qualitatively differ-
ently from the aggregate of its individual elements: it is not
about the position of the constituent items, but the average
location and extent of the group as a whole. For example, if
asked to predict whether falling sand will be caught by or rip
through a sheet of paper, it is not that people represent latent
properties like mass for each individual grain, but that they
have some notion of the average weight.

There is good reason to believe that people can extract
these ensemble properties. Research on ensemble perception
shows that humans can extract global statistics of orientation,
size, and facial expressions without encoding all individual
items in a set (Whitney & Yamanashi Leib, 2018; Haberman
& Whitney, 2007, 2009; Ariely, 2001). This allows observers
to form rapid scene-level inferences and helps conserve at-
tentional resources (Alvarez & Oliva, 2008). However, in
contrast to orientation or size, physical properties like mass,
elasticity, or softness cannot be extracted from a single im-
age but instead can be inferred from watching objects inter-
act (Paulun, Schmidt, van Assen, & Fleming, 2017; Paulun
& Fleming, 2020; Sanborn, Mansinghka, & Griffiths, 2013;
Yildirim, Smith, Belledonne, Wu, & Tenenbaum, 2018). If
people represent collections of physical objects as ensembles,
they should be able to use physical reasoning to extract the
physical properties of these groups. Here, we test this hypoth-
esis by studying whether people make ensemble judgments of
mass.

In particular, we tested whether people can perceive an en-
semble’s mass in ways that cannot be reduced to aggregating
information from individual elements. We present two pre-
registered experiments that compare single-object mass judg-
ments to ensemble mass judgments. First, we demonstrate
that the perception of the average mass of an ensemble is
more accurate than the perception of masses of individual ob-
jects. We then show that this ensemble benefit is not simply
due to aggregating information from individual objects. To-
gether, this shows that people are able to perceive ensemble
physical properties, suggesting that the simulation of object
sets is different from the simulation of individual objects.

Experiment 1
We first tested whether participants can discriminate mass dif-
ferences more accurately from ensembles than from individ-



Figure 1: From playing with marbles, pouring cereal into a bowl, or watching leaves cascade through the air in autumn,
humans frequently encounter collections of objects that behave as cohesive groups. Despite the improbability of perceiving
and simulating each object individually, people intuitively and accurately predict the behavior of these ensembles. This ability
suggests the existence of a perceptual mechanism that extracts ensemble-level properties, enabling judgments about a group’s
physical characteristics without relying on detailed representations of its individual components.

ual objects. We investigated these discrimination abilities by
showing people videos of a single marble or set of 25 marbles
falling onto and thus deforming an elastic cloth (see Fig. 2),
and asking which of two videos contained the heavier mar-
ble(s). Because the deformation of the cloth is based on both
the mass of the marble and the speed at which it contacts
(which in turn is based on the height at which it is dropped
from), watching the full interaction should provide sufficient
information to infer the marbles’ masses.

We hypothesized that if participants had an understanding
of ensemble properties, they would show higher discrimina-
tion accuracy when judging the average mass of ensembles
of 25 marbles, compared to single marbles, even when the
underlying mass differences were matched.

Participants We collected data from 100 participants on
Prolific. The experiment lasted approximately 25 minutes,
and each participant was compensated $6.25 for their time.

Stimuli All stimuli were created using Houdini, a 3D an-
imation and simulation software. Each stimulus was a 2-
second video clip showing marbles falling onto a cloth sub-
divided into a 5× 5 grid. In the simulated scene, the cloth
spanned a width of 3.33 m, and marbles were dropped from
heights uniformly randomized between 1.3 and 1.6 m. Within
each grid square, marble positions were slightly perturbed by
up to ±0.05 m in the x and z directions, and each marble
was randomly rotated to avoid texture alignment cues. In
the videos, balls would always fall at 9.8m/s2, in line with
Earth’s gravity. The camera was positioned 6.25 m from the
cloth, such that the cloth took up 24.5% of the video window.

There were two types of trials: ”Single” trials contained
two videos showing only a single marble each, and ”Ensem-
ble” trials contained two videos showing 25 marbles each. In
both types, one of the two videos was the reference video in

which the marbles had the same mass (Single) or geometric
mean of masses (Ensemble) in all trials. The other video, the
test video, showed marbles that had a mass or average mass
that ranged between 1

4 to 4 times the reference mass, sampled
from 21 possibilities, equally spread in log-mass space. In the
Ensemble trials, the 25 marbles had masses such that the geo-
metric mean of all marble masses was chosen in the same way
as the Single trials, but the individual marble masses were
chosen to produce a log-normal distribution of masses rang-
ing from 0.45 to 2.24 times the average mass; these marbles
were distributed randomly across grid positions. We chose to
space mass stimuli in log-space because prior psychometric
studies have found that people discriminate mass ratios, not
absolute mass differences (Sanborn et al., 2013).

In the Single trials, the reference marble was always
dropped onto the center of the grid, while the alternate mar-
ble’s position on the grid was randomized. In all cases, the
marbles’ initial heights, positions within the grid, and rota-
tions were randomized, requiring participants to rely on mass-
related cues rather than extraneous visual information.

Each participant completed 120 trials (60 Single, 60 En-
semble). Trial order and the order of the two videos (within
each trial) were randomized.

Procedure Participants began with a practice session con-
sisting of two trials and a brief quiz before the main exper-
iment. The experiment was divided into two blocks, each
containing only Single or Ensemble Trials, with block order
randomized. On each trial, two sequential videos appeared,
separated by a short interval. After watching the two videos
in sequence, participants clicked one of two buttons to indi-
cate whether the second stimulus was “Lighter” or “Heav-
ier” relative to the first. The order of the reference and test
videos was randomized for each trial. Mass judgments were
recorded relative to the reference video.



B) Experiment 1: Single vs. Ensemble Mass Judgments
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Figure 2: (A) Our stimuli consisted of 2s videos showing an individual marble or an ensemble of marbles falling onto a cloth.
(B) In Experiment 1, participants viewed two sequential videos in each trial and made a two-alternative forced choice (2AFC)
indicating which stimulus was heavier. In the “Single” section (top row), each video contained one marble falling onto a cloth.
In the “Ensemble” section (bottom row), each video contained 25 marbles. This setup tested whether participants discriminate
the mean mass of ensembles more effectively than individuals. (C) In Experiment 2, participants saw videos of two ensembles,
with the only difference between the two being the mass of 5 marbles. After watching the sequence, participants had to first
decide which group was heavier, then pick out one of the five marbles that had different masses between the two videos.

We estimated the shape of the psychometric function for
each participant linking the mass ratios between the test and
reference videos with the probability that a participant would
judge the test video as heavier. The function linking these two
variables was a cumulative normal curve with a lapse rate,
using separate functions for the Single and Ensemble stimuli.

We used QUEST+ (Watson, 2017), an adaptive Bayesian
method, to efficiently select the most informative stimuli to
fit the slope, threshold, and lapse rate for each participant.
Thus, no two participants saw exactly the same stimuli.

Results We conducted a hierarchical Bayesian analysis to
model participants’ responses. Each trial’s response (yi j) was
modeled using a cumulative Gaussian psychometric function:

P(yi j = 1) =
λi

2
+(1−λi) ·Φ

(
logxi j −µi

σi

)
(1)

where yi j = 1 indicates a ”Heavier” response, xi j is the pre-
sented mass ratio on trial j for participant i, Φ(·) is the stan-
dard normal cumulative distribution function, and λi, µi, and
σi represent the lapse rate, threshold, and slope parameters,
respectively.

The hierarchical model included three key participant-
specific parameters:

• Threshold (µi): The log mass ratio at which participants
responded ”Heavier” 50% of the time, representing the
point of subjective equality (PSE).

• Slope (σi): The standard deviation of the cumulative Gaus-
sian. Smaller σi indicates higher sensitivity to mass differ-
ences.

• Lapse Rate (λi): The probability of random responses,
modeled hierarchically as λi ∼ Beta(αλ,βλ).

Thresholds and slopes were modeled hierarchically across
participants. For the Single section, µSingle

i ∼ N (µgroup,σµ)

and log(σSingle
i ) ∼ N (σgroup,σσ). The Ensemble section in-

cluded offsets for thresholds (∆µ) and slopes (∆σ):

µEnsemble
i = µSingle

i +∆µ, σ
Ensemble
i = σ

Single
i ·∆σ,

with ∆µ ∼ N (µ∆µ,σ∆µ) and log(∆σ)∼ N (µ∆σ,σ∆σ).
The primary parameter of interest was ∆σ, representing

the slope difference between sections, as it reflects whether
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Figure 3: Experiment 1 results. (A) Solid lines represent av-
erage psychometric curves across participants for single and
ensemble mass discriminations. Light dashed lines represent
individual curves. (B) Changes in the estimated slope of the
psychometric curve between the single and ensemble trials.
Dots represent individual participants, with the bar represent-
ing the average.

participants demonstrated greater sensitivity in the Ensemble
section.

The Bayesian model revealed that observers discriminated
mass differences more accurately for Ensemble stimuli com-
pared to the Single stimuli (∆σ = σEnsemble/σSingle; mean:
0.76, 95% CrI: [0.69, 0.84]); see Fig. 3). We found a small
difference between stimuli types in the threshold (mean:
0.039, 95% CrI: [0.00, 0.08]), only differing slightly from
zero for Single stimuli (mean: −0.034, 95% CrI: [−0.066,
−0.004]) but not for Ensemble stimuli (mean: 0.005, 95%
CrI: [−0.020, 0.031]), suggesting judgments with little bias.*

Furthermore, the difference in psychometric slopes was re-
liable across individuals, with all participants being best ex-
plained by a steeper slope in the Ensemble versus the Single
section, suggesting that the better discrimination for Ensem-
ble stimuli is not just driven by extreme performance from a
few participants.

Experiment 2
While Experiment 1 showed that participants can dis-
criminate average mass more accurately when comparing
ensembles of marbles than when comparing individuals, it
is possible that participants were nonetheless aggregating
information from individual marbles, but performing better
in the Ensemble condition because more information was
available. To rule out this alternative explanation—that
ensemble judgments could arise entirely from aggregating
individual-level detections—we designed a second exper-
iment, explicitly testing whether participants’ ensemble
judgments exceed what could be explained by noticing

*A frequentist analysis – using a GLMM with a logistic link
function and random slopes for threshold and slope for each individ-
ual – produced qualitatively similar results to the Bayesian analysis.

changes in individual objects alone.
Following the paradigm of (Haberman & Whitney, 2011),

we tested participants’ ability to localize changes in an en-
semble, as well as judgments of the ensemble as a whole. If
people’s ensemble judgments rely solely on item-level cues
(i.e., identifying changed marbles), their overall mass dis-
crimination should be predictable from item-level localiza-
tion performance. However, if participants encode and com-
pare the mean mass of the ensemble, they should outperform
this item-level prediction.

Participants We collected data from 130 participants on
Prolific, aiming for 80 participants after exclusions (see be-
low). The experiment lasted approximately 20 minutes, and
each participant was compensated $5 for their time.

Stimuli We used the same Ensemble stimuli as in Exper-
iment 1 (sets of 25 marbles with average masses spanning
from 1

4 to 4 times the reference mass). Here, however, the
test videos were not all compared to the same reference mass.
Instead, the comparison videos showed modifications of the
original test stimuli by taking five of the heaviest or lightest
marbles and making their masses 5 times lighter or heavier re-
spectively (changing the average mass of the entire ensemble
by a factor of 1.4).

Procedure Participants completed 60 trials. On each trial,
participants saw two videos and were first asked to judge
whether the average marble mass in the second video was
lighter or heavier than the first (as in Experiment 1), and then
to select one of the marbles that had changed their weight
between video 1 and video 2 by selecting its grid position on
the cloth (see Fig 2c).

We included five catch trials in which 15 of the 25 marbles
were altered by a factor of 16, yielding an obvious difference,
changing the average mass by a factor of 10. Participants who
did not correctly identify the heavier ensemble in at least 4 of
these 5 trials were excluded from further analysis.

Analysis We tested whether participants’ mass discrim-
ination exceeded what would be expected if they relied
purely on detecting which marbles changed (item-level de-
tection). If item-level detection plus guessing fully ex-
plains mass discrimination, then participants’ discrimination
accuracy should be predicted by their localization perfor-
mance. Conversely, if participants utilize an aggregate phys-
ical property (the ensemble’s mean mass), their observed
mass-discrimination accuracy should surpass what would be
predicted by their item-level change localization accuracy.
We analyze these results agnostic to how people might be
extracting individual or ensemble information (e.g., by at-
tending solely to cloth deformation) – instead our method
tests solely whether judgments of ensemble masses can be
explained by aggregating percepts of individual objects.



Results Overall, participants performed above chance in
both tasks, but far from ceiling. The average participant se-
lected the heavier ensemble 72.1% of the time (SD = 9.3%),
and located an individually changed marble 42.7% of the time
(SD = 12.1%).

Table 1: Total counts of correct vs. incorrect judgments for
discrimination and localization across all trials and partici-
pants

Discrimination Correct Discrimination Wrong
Localization Correct 1674 204
Localization Wrong 1499 1023

We first analyzed our results following the method of
Haberman and Whitney (2011). In our stimuli, an individ-
ual change is perfectly diagnostic of the change in ensemble
mass, so we assume that if people localize the change they
will get the discrimination correctly. Because participants
correctly selected a changed marble in 42.7% of the trials,
we can calculate the average probability of noticing any in-
dividual difference (pnotice) when accounting for guessing on
the localization task as 28.4%, using the equation:

ploc correct = pnotice +(1− pnotice) ·0.2 (2)

If people use individual changes as the basis for their en-
semble mass judgments, then they should correctly identify
the heavier marble group, again accounting for chance, as:

pmass correct = pnotice +(1− pnotice) ·0.5 (3)

This would suggest that if participants were relying on in-
formation from individual marbles, they would have an accu-
racy of 64.2% on the ensemble discrimination task. How-
ever, their performance of 72.1% was statistically signifi-
cantly greater than would be expected (3173/4400, exact bi-
nomial test, p ≈ 0), suggesting that participants’ ensemble
judgments outperform what would be expected if they were
simply aggregating individual information.

We can further look at the trials in which participants failed
the change localization task, and so cannot be using indi-
vidual information. We find that their accuracy is still reli-
ably above chance (59.4%, 1499/2522, exact binomial test,
p ≈ 0). Thus, even when individual information is not avail-
able, participants still have enough information to correctly
make judgments about the ensemble.

Bayesian Model: To further investigate the distinction be-
tween item-level and ensemble-level processes, we imple-
mented a hierarchical Bayesian model (Fig. 4). This model
estimates two key parameters for each participant:

1. Notice Probability: A latent probability representing how
often participants detect the changed marbles on a given
trial. When changes are detected, the model assumes per-
fect accuracy for both tasks (mass discrimination and lo-
calization). When changes are not detected, guessing is

Subject

Trial

Figure 4: Graphical overview of the hierarchical Bayesian
model for Experiment 2, which tests whether participants’
mass discrimination judgments exceed what is predicted by
detecting individual changes alone. The model estimates an
additive performance difference (perfDiff) representing this
extra ensemble-level advantage.

modeled with fixed probabilities of 0.5 for mass discrim-
ination (2AFC) and 0.2 for localization (random chance
among five marbles).

2. Performance difference: A participant-specific offset
added only to the mass-discrimination probability. This
parameter captures sensitivity exceeding what is explained
by detecting changed marbles alone.

The posterior distribution of the performance difference
parameter was analyzed to test whether it was credibly greater
than zero. If the 95% credible interval for the performance
difference parameter lies entirely above zero, this indicates a
reliable ensemble-level advantage in mass perception.

The hierarchical Bayesian model estimated participants’
probability of detecting changes in individual marbles (item-
level detection) and their sensitivity to ensemble-level differ-
ences (see Fig. 4). We define the probabilities pMass,i and
pGrid,i for each subject i as:

pMass,i = noticeIndi +(1−noticeIndi) ·massGuess+perfDiffi

pGrid,i = noticeIndi +(1−noticeIndi) ·gridGuess

where noticeIndi represents the probability of detecting
individual changes, massGuess and gridGuess are baseline
probabilities, and perfDiffi captures the ensemble-level ad-
vantage.

The notice probability had a mean of 0.284 (SD = 0.009),
indicating that the average participant would detect changes
in individual marbles on approximately 28% of trials. Im-
portantly, the performance difference parameter, which re-
flects sensitivity to ensemble-level properties beyond item-
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Figure 5: Difference between observed and predicted (from
individual localization) ensemble mass discrimination accu-
racy by subject. Markers show the mean difference (observed
minus predicted) with a 95% bootstrapped confidence inter-
val. The zero line marks parity; values above zero indicate
performance that exceeds predictions from individual item
change detection.

level detection, had a mean of 0.078 and a 95% credible in-
terval above zero ([0.061, 0.094]). The majority of individ-
ual participants (68 of 80) had positive performance differ-
ences (Fig. 5), suggesting the effect is not driven by just a few
people. This provides strong evidence that participants could
access ensemble-level mass representations independently of
their ability to detect changes in individual items.

Discussion
Our results show that people can extract ensemble properties
such as mass in a way that cannot be fully explained by item-
by-item processing. In Experiment 1, participants judged en-
semble masses more accurately than individual masses, sug-
gesting that mass perception operates differently for groups
of objects. In Experiment 2, participants’ ability to compare
the mean mass of two groups exceeded what would be pre-
dicted by detecting and tracking only the changed marbles.
Even considering our stimuli, which were intentionally ide-
alized to facilitate individual object processing, participants
still seemed to treat the ensembles as a group rather than
purely as a collection of individuals. This suggests that, sim-
ilar to ensemble perception in other domains, the brain forms
statistical representations of physical properties; but unlike
size or orientation, ensemble mass perception requires ob-
serving objects interacting over time.

An open question is whether ensemble physics represents
a distinct mode of processing or if it reflects a transition be-
tween reasoning about individual objects and reasoning about
continuous substances like liquids. Some behavioral evidence

suggests that humans process “stuff,” like granular materi-
als or non-solid substances, differently from discrete objects,
often treating them as fluids (Kubricht et al., 2017; Bates,
Yildirim, Tenenbaum, & Battaglia, 2019). Neuroimaging re-
search further suggests that different brain regions are in-
volved in perceiving granular and liquid substances versus
solid objects (Paulun et al., 2023). Our findings suggest that
ensemble physics might sit at an intermediate stage between
these two modes of representation: the objects in our exper-
iments remained discrete and separable but were processed
collectively, as a group with emergent properties.

One factor influencing this transition might be the number
and types of objects in a scene. It is possible that when only
a few objects are present, people encode them individually,
while at larger numbers, they switch to an ensemble-level rep-
resentation. If so, there could be a threshold at which object-
based reasoning gives way to ensemble processing. Addition-
ally, spatial arrangement may play a role in whether a group is
perceived as an ensemble. In our study, marbles were evenly
distributed on a grid, reinforcing their treatment as individu-
als. Would the same effect hold if the objects were randomly
distributed, tightly clustered, or mixed with objects of differ-
ent sizes, colors, or textures? The extent to which ensem-
ble perception generalizes across different configurations re-
mains an open question.

While our study focused on mass, ensemble reasoning
might extend to other physical properties. For example, peo-
ple might extract summary representations of an ensemble’s
elasticity, friction, or density. Beyond aggregate properties
that can be attached to individual objects, it is also worth
considering whether people can extract relational represen-
tations from ensembles that do not exist for individuals. Vis-
cosity, for instance, is defined by how a material resists de-
formation or flow, which depends on the movement of its in-
dividual components relative to one another. While people
can perceive the viscosity of liquids (Bates et al., 2019; van
Assen, Barla, & Fleming, 2018), can they analogously per-
ceive relational properties of ensembles? This would suggest
that they are computing group-level physical properties that
emerge from the interaction of many elements. Can the per-
ception of liquids even be thought of as a form of ensemble
perception? Exploring these questions will further enhance
our understanding of the representations and computations
underlying intuitive physics and material perception.

Traditional models of cognition emphasize simulating in-
dividual objects. However, our results suggest that the mind
may represent ensembles in a distinct manner. The brain may
represent different classes of physical entities—individual
objects, ensembles, and perhaps even “stuff”, i.e., substances
like liquids—each with its own computational properties.
How ensemble representations are constructed, which prop-
erties they compute, and how they interact with individual-
object representations remain open questions. Exploring
these distinctions will improve our understanding of how the
mind organizes and simulates the physical world.
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